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ABSTRACT

A method for performing a global/local stress analysis is described and its
capabilities are demonstrated. The method employs spline interpolation functions
which satisfy the linear plate bending equation to determine displacements and
rotations from a global model which are used as “boundary conditions” for the
local model. Then, the local model is analyzed independent of the global model of
the structure. This approach can be used to determine local, detailed stress states
for specific structural regions using independent, refined local models which exploit
information from less-refined global models. The method presented is not restricted
to having a priori knowledge of the location of the regions requiring local detailed
stress analysis. This approach also reduces the computational effort necessary to
obtain the detailed stress state. Criteria for applying the method are developed. The
effectiveness of the method is demonstrated using a classical stress concentration

problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.
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Chapter 1

Introduction

1.1 Overview

Discontinuities and eccentricities, which are common in practical structures,
increase the difficulty in predicting accurately detailed local stress distributions,
especially when the component is built of a composite material, such as a graphite—
epoxy material. The use of composite materials in the design of aircraft structures
introduces added complexity due to the nature of the material systems and the
complexity of the failure modes. The design and certification process for aerospace
structures requires an accurate stress analysis capability. Detailed stress analyses of
complex aircraft structures and their subcomponents are required and can severely
tax even today’s computing resources. Embedding detailed “local” finite element
models within a single “global” finite element model of an entire airframe structure
may be impractical due to the computational cost associated with the large num-
ber of degrees of freedom required for such a global detailed model. If the design
load envelope of the structural component is extended, new regions with high stress
gradients may be discovered. In that case, the entire analysis with embedded local
refinements may have to be repeated and thereby further reducing the practicality
of this brute force approach for obtaining the detailed stress state. Adaptive mesh
refinement methods may be used to embed the local refinement in the global finite
element model. The increased number of degrees of freedom again reduces the prac-
ticality of this approach in the global/local analysis realm. Also in structural appli-

cations, triangular elements introduced through unstructured remeshing methods



may adversely affect the solution because they are inherently stiffer than quadri-

lateral elements, and hence may require a more complicated structured remeshing

method.

The phrase global/local analysis has a myriad of definitions among analysts.
The concept of global and local may change with every analysis level, and also from
one analyst to another (see Fig. 1.1). An analyst may consider the entire aircraft
structure to be the global model, and a fuselage section to be the local model. At
another level, the fuselage or wing may be the global model, and a stiffened panel is
the local model. Laminate theory is used by some analysts to represent the global
model, and micromechanics models are used for the local model. At the materials
level, global/local variational models (e.g., refs. [1, 2]) may be used to define detailed
response functions in a particular, predetermined local region of interest, while
the remainder of the global domain may be represented by effective properties.
The global-local model is developed to examine the elastic stress field in laminates
containing many layers. In the context of global/local analysis, the laminate is the
global model, while each layer is a local model. The upward-intergrated top-down-
structured analysis [3] makes use of several hierarchical global /local levels to perform
a nonlinear structural analysis of a helicopter composite blade/vane component. In
the iterative solution process, the blade/vane component is initially considered as
the global model while the laminate is the local model. At a subsequent analysis
level, the laminate becomes the global model and a unidirectional ply is the local
model. The matcrial properties are updated during each iteration and used in the

“upward” analyses of the lamina, laminate, and the global structure.

A detailed, local analysis may be performed completely independent of the
global analysis whereby the number of degrees of freedom in the local analysis is

limited to only those in the local refined model. The global /local stress analysis
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methodology, herein, is defined as a procedure to determine local, detailed stress
states for specific structural regions using information obtained from an independent
global stress analysis. The global/local analysis methodology in this study employs

the finite element method in both global and local analyses.

1.2 Review of Previous W&rk 7

Since a single definition of global/local analysis is not practical, a wide range of
information is found in the open literature (e.g., refs. [4-20]). Global/local analysis
research areas include such methods as substructuring, submodeling (e.g., linear
constraint methods, and the specified boundary stiffness/force method) and exact
zooming. In addition, hybrid techniques such as reduced basis methods are other

examples of global/local analysis methods.

1.2.1 Substructuring

The substructuring technique is perhaps the most common technique for
global/local analysis in that it reduces a complex structure to smaller, more man-
ageable components, and simplifies the structural modeling. A specific region of
the structure may be modeled by a substructure or multiple levels of substructures
to determine the detailed response. Wilkins [6] made use of multi-level substruc-
turing or “telescoping” to study damage tolerance of composite structures. In some
nonlinear problems, substructuring may be used if the material or geometric non-
linearity is localized, while the remainder of the structure remains linear [7, 8]. The
part of the structure which is assumed to remain linear during loading is defined
as one or multiple substructures, while the part of the structure which undergoes
nonlinear deformation is defined as a nonlinear substructure. Here, the linear part
of the structure may be considered the global model, and the nonlinear region is

the local model.



1.2.2 Submodeling

Submodeling refers to any method that uses a node by node correspondence
for the displacement field at the global/local interface boundary. The ANSYS finite
element analysis program [9] employs such a method. The analyst may define an
independent, more refined local model by transitioning from coarsely-spaced bound-
ary nodes of the global model to a more refined internal local model using triangular
elements (see Fig. 1.2). Research has ;Llsgibeen proposed with Vaﬁable—order el-

ements for mesh transitioning (e.g., refs. [10, 11]) as shown in Fig. 1.3. Griffin

and Vidussoni [12] eﬁiplby a form of subn’riodélirrrlgrtré bérform a two—dinlensional
to three-dimensional global/lti);:al analysis. The speciﬁreid Eoundary displacement
(SBD) method [13, 14] involves developing a subregion model of the portion of the
structure of interest and applying displacement boundary contrii'tion;derived from
the global structural solution to simulate the effect of the rest of the structure upon
the subregion. The SBD method uses the finite element shape functions to produce
displacement constraints to be appfired’ to the specified boundary nodes. The rigid
(RSPLINE) element in MSC/NASTRAN [15] provides a straightforward method for
changing mesh size while providing an approximation to the actual motions at the
dependent degrees of freedom. However, since the interpolation is one-dimensional,

it does not guarantee the continuity of stresses across the global/local interface

boundary.

The linear constraint method [13, 14] uses a global structural model which has
been locally refined in the area of interest. Linear constraint equations, based on
the element shape funct.iorrls,rrémre applied to any additional nodes on the global/local
interface boundary added for element refinement. One of the drawbacks of this
method is that, the entire global model must be reanalyzed every time the local

area of interest changes or the mesh refinement of the area of interest changes.

B ;nﬂ] i\;n ii}‘ﬁhw
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The specified boundary stiffness/force (SBSF) method [16] uses an independent
subregion model with stiffnesses and forces as boundary terms. These stiffnesses
and forces represent the effect of the rest of the structure upon the subregion. The
stiffness terms are incorporated in the stiffness of the subregion model and the forces

are applied on the boundary of the local model.

1.2.3 Efficient and Exact Zooming

An efficient zooming technique, as described in reference [17], employs static
condensation and exact structural reanalysis methods. Although this eflicient zoom-
ing technique involves the solution of a system of equations of small order, all the
previous refinement processes are needed to proceed to a new refinement level.
An “exact” zooming technique [18] employs an expanded stiffness matrix approach
rather than the reanalysis method described in reference [17]. The “exact” zooming
technique utilizes results of only the previous level of refinement. For both meth-
ods, separate locally-refined subregion models are used to determine the detailed
stress distribution in a known critical region. The subregion boundary is coincident
with nodes in the global model or the previously refined subregion model which
is akin to the submodeling technique discussed in the preceding subsection. The
“efficient” and “exact” zooming techniques differ in the matrix operations used to
condense out the degrees of freedom outside of the subregion area. The stiffness
terms for the locally-refined region are added to the stiffness matrix of the global
structure. The degrees of freedom corresponding to the nodes in the global model
outside the locally-refined region are condensed out from this augmented stiffness
matrix. The system is, therefore, reduced to one that involves the degrees of free-
dom of the global model within the locally-refined region of the structure and the
degrees of freedom of any additiogg} nodes introduced by the refinement process.
The locally-refining process may be continued with multiple levels of local refine-

ment until satisfactory results are obtained. For multiple levels of local refinement,
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displacements contained in the final, most refined portion of the structure are ob-
tained first. In the “exact” zooming method, the displacements in the final, most
refined subregion are obtained on the basis of the stiffness or flexibility terms of
the previous locally-refined region only. Next, the response in the global region,
as well as the response within various other levels of refinement, can be computed.
Although these methods are computationally expensive, the results presented for
an isotropic plate with a central hole are as accurate as a complete model with

embedded local mesh refinement and no constraint equations are introduced.

1.2.4 Hybrid Techniques

In the global variational methods, the domain of the governing equation is
treated as a whole, and an approximate solution is constructed from a sequence
of linearly independent functions (i.e., Fourier series) that satisfy the geometric
boundary conditions. In the finite element method, the domain is subdivided into
small regions or elements within which approximating functions (usually low—order
polynomials) are used to describe the continuum behavior. Hybrid techniques, such
as the global/local finite element method as presented by Dong [19], make use of

two or more methods in different dpmains of the structure.

Global/local finite element analysis may refer to an analysis technique that
simultaneously utilizes conventional finite element modeling around a local discon-
tinuity with classical Rayleigh-Ritz approximations for the remainder of the struc-

‘ture. For exafﬁpié,fﬁdhg considers the natural frequency of a Sirhply—supported

rectangular isotropic plate with and witiiout a hole. By employing the Ritz method
to obtain an approximatioﬁ séquence, the freqﬁency of the plate with no hole may be
deduced from Hamilton’s principle. ;ﬁbWé'\rer, for the plate with a holé, the selection
of an approximation sequence that satisfies both the boundary conditions at the free

edge around the hole and the exterior edges is difficult. The finite element method
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may be employed, but is impractical due to the computational effort required to
obtain the solution. The Global-Local Finite Element Method (GLFEM) [19] is
an alternative approach. A local finite element mesh is established to model the
physical behavior around the hole. For a small hole, the frequency of the plate does
not change from that of the plate with no hole. Therefore, a global approximation
sequence may be used for the remainder of the plate. Continuity of the displace-
ments and rotations at the interface between the two regions must be enforced.
The computational effort is reduced as a result of the use of the limited number
of finite element degrees of freedom. The Global-Local Finite Element Method,
however, presupposes that the analyst can identify an approximation sequence for
the global behavior. The selection of this approximation sequence may, therefore,
restrict GLFEM to regular geometries and specific boundary conditions.

Problems with singularities (i.e., crack tips) limit the accuracy of an analysis
performed with conventional finite elements. To overcome the shortcomings of the
conventional finite element, the finite element analysis employs special crack tip
elements to model the existing singularities. However, experience and judgement
are required to select the appropriate element size and the number of terms in the
series expansion used to represent the mechanical field. The GLFEM provides an
alternative approach. In contrast to the preceding example of the GLFEM, Dong
models the local region around the crack tip with approximation functions. Beyond
the crack tip, a region may be used which includes the approximation functions
and also the finite element representation. Outside the overlap region, conventional
finite elements may be used for the remainder of the structure. As in the previous
example, the approach is limited to problems for which the analyst can identify the

approximation functions.

Another type of hybrid method is the reduced basis method. A reduced basis

method uses a set of basis vectors (e.g., Rayleigh-Ritz vectors, vibration mode
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shapes) to reduce the size of the problem. Reduced basis methods have been used
to identify the local geometrically nonlinear regions of structures. Then, a nonlinear
analysis of only these local regions may be performed. A mixed local and global
functions approach for the collapse of shell structures is presented in reference [20].
The approach is based on a mixture of global, reduced basis vectors and local, finite
element analysis. Conventional finite element modeling of the nonlinear system is
performed. The system of equations is reduced by selecting a limited number of
Rayleigh-Ritz functions (basis vectors). The complex nonlinear analysis strategy
and the difficulty in selecting the approximation functions reduce the viability of

this approach.

The aforementioned global/local methods, with the exception of the submod-
eling technique, require that the analyst know where the critical region is located
before performing the global analysis. However, a global/local methodology which
does not require a priori knowledge of the location of the local region(s) requiring
special modeling could offer advantages in many situations by providing the mod-

eling flexibility required to address detailed local models as their need is identified.

1.3 Objectives and Scope
The overall objective of the present study is to develop such a computational
strategy for obtaining the detailed stress state of composite structures. Specific
objectives are:
1. To develop a method for performing global/local stress analysis of com-
posite structures
2. To devclop criteria for defining the global/local interface region and local
modeling requirements
3. To demonstrate the computational strategy on representative structural

analysis problems
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The scope of the present study includes the global/local linear two-dimensional
stress analysis of finite element structural models. The method developed is not
restricted to having a priori knowledge of the locations of the regions requiring
detailed stress analysis. The guidelines for developing the computational strategy
include the requirements that it be compatible with general-purpose finite element
computer codes, valid for a wide range of elements, extendible to gecometrically non-
linear analysis, and cost-effective. In addition, the computational strategy should
include a procedure for automatically identifying the critical region and defining
the global/local interface region. Satisfying these guidelines will provide a general-
purpose global/local computational strategy for use by the aerospace structural

analysis community.

The organization of the remainder of this study is as follows. The global/local
methodology, as defined in the overview, is reviewed in Chapter 2. The global/local
terminology is discussed, and the approach for the complete global/local analysis
is outlined. The global/local method is based on a spline interpolation of a global
solution to obtain “boundary conditions” for the local analysis. Global and local
modeling issues are discussed as well as the definition of the global/local interface
boundary and the global interpolation strategy. The mathematical formulation for
the spline interpolation is presented in Chapter 3. The spline interpolation func-
tions satisfy the linear plate bending equation (i.e., DV4w = q). The implemen-
tation of the spline interpolation is discussed. The computational strategy for the
global/local analysis is presented in Chapter 4. Numerical results are presented in
Chapter 5. Conclusions and recommendations are given in Chapter 6. The deriva-
tion of the spline interpolation function is presented in Appendix A. Runstreams for
the global and local analyses of an isotopic panel with a circular cutout are given

in Appendices B and C.



Chapter 2
Global/Local Methodology

Global/local stress analysis methodology is defined as a procedure to determine
local, detailed stress states for specific structural regions using information obtained
from an independent global stress analysis. The local model refers to any structural
subregion within the defined global model. The global stress analysis is performed
independent of the local stress analysis. The interpolation region encompassing the
critical region is specified. A surface spline interpolation function is evaluated at ev-
ery point in the interpolation region yielding a spline matrix, S(z,y), and unknown
coefficients, a. The global field is used to compute the unknown coefficients. An
independent, more refined local model is generated within the previously—defined
interpolation region. The global displacement field is interpolated producing a local
displacement field which is applied as a “boundary condition” on the boundary of

the local model. Then, a complete local finite element analysis is performed.

The development of a global/local stress analysis capability for structures has
been underway for several years and has taken several different approaches as is
cvident from the literature review. The methodology for a global/local analysis
generally involves four key components. The first component is an “adequate”
global analysis. In this context, “adequate” implies that the global structural be-
havior is accurately determined and that local structural details are at least grossly
incorporated. The second component is a strategy for identifying, in the global
model, regions requiring further study. The third component is an interpolation
procedure that does not require coincident nodes along the global/local interface

boundary. Finally, the fourth component is an “adequate” local analysis. In this

10



context, “adequate” implies that the local detailed stress state is accurately de-
termined and that compatibility requirements along the global/local interface are
satisfied. The development of a global/local stress analysis methodology requires

an understanding of each key component and insight into their interaction.

The global/local stress analysis methodology presented herein provides an al-
ternative to existing strategies which require a priori knowledge of the location of
a critical region and often require embedding detailed finite element models in a
global finite element model to obtain an accurate detailed stress state. Unlike most
of the global/local methods reviewed, the method described does not require hav-
ing to know, a priori, the region(s) requiring a detailed stress analysis. In practice,
the global analysis model is “adequate” for the specified design load cases. How-
ever, these load cases frequently change in order to extend the operating region
of the structure or to account for previously unknown effects. In these incidents,
the global analysis may identify new “hot spots” that require further study. The
proposed methodology provides an analysis tool for these local analyses.

A global/local stress analysis methodology is described in subsequent sections.
The terminology used to describe the different components of the solution strategy
is discussed. The components of the global/local analysis method, which includes

global modeling, interpolation, and local modeling are discussed.

2.1 Terminology

The terminology of the global/local methodology presented herein is depicted
in Fig. 2.1 to illustrate the components of the analysis procedure. The global model
is a finite element model of a complete structure or a subcomponent of a structure
(see Fig. 2.1a). A region requiring a more detailed interrogation is subsequently
identified by the structural analyst. This region may be obvious, such as a region

around a cutout in a panel, or not so obvious, such as a local buckled region of

11



a curved panel loaded in compression. Because the location of these regions are
usually unknown prior to performing the global analysis, the structural analyst
must develop a global model with sufficient detail to represent the global behavior
of the structure. An interpolation region is then identified around the critical region
as indicated in Fig. 2.1b. An interpolation procedure is used to determine the
7displacements and rotations used as “boundary conditions” for the local model.
The interpolation region is the region within which the generalized displacement
solution will be used to define the interpolation matrix. This matrix, discussed
in Chapter 3, consists of the coordinates and functions of the coordinates in the
interpolation region. The globa]/locél interface boundary, indicated in Fig. 2.1c,
coincides with the intersection of the }j)gundary of the local model with the global
model. Thedeﬁmtlon of the intrex"fra;;}raf;}ixrrlcrlary may affect the accuracy of the
interpc;liation lprocedurre aﬁd rthus therlrbrcAa.l‘ stress state. Criteria for defining the
interface boundary are discussed in Section 2.4. The local model lies within the
Viinterpol>a£i<r)n I;ééirbnras rshown in Fig. 2.1c and is generally more refined than the
global model in order to predict more accurately the detailed state of stress in the
rcﬁrritica,l region. The ;roordina.tes or nc;des of the local model need not be coincident

with any of the coordinates or nodes of the global model.

A schematic which describes the overall solution strategy is shown in Fig. 2.2.
The global/local interpolation procedure consists of generating a matrix based on
the global solution and a local interpolated field. The local interpolé.ted field is that

field which is interpolated from the global analy's‘i’s and is valid over the domain

element modecl, use of the interpolated field to impose conditions on the local model,

and the detailed stress analysis.

12




[ -1l Rhas-B-a Ed " rom

The global/local method described herein may be used to interrogate multiple
critical regions of a global structure. The use of multiple regions is depicted in
the schematic shown in Fig. 2.3. Once the global analysis is performed, single
or multiple critical regions may be identified. Multiple interpolation regions and
spline matrices may be defined. Multiple local models are generated and the local
interpolated fields are obtained followed by the complete local analyses. Although
the definition of the multiple regions and the multiple analyses may be performed

sequentially, the approach is readily applicable to concurrent processing.

Multi-level global/local analyses may also be performed. The global and local
model definitions change as the levels of the global /local analysis increase. The local
region identified at the first level becomes the global model at the next level and
another local model is defined. The global/local analysis method, then continues.
The multi-level analysis may be used first to obtain a local two-dimensional detailed
stress state, and then to obtain an even more detailed stress state by a more refined

two-dimensional or three-dimensional local analysis.

2.2 Global Modeling and Analysis

The development of a global finite element model of an aerospace structure for
accurate stress predictions near local discontinuities is often too time consuming
to impact the design and certification process. Predicting the global structural
response of these structures often has iany objectives including determining overall
structural response, stress analysis, and internal load distributions. Frequently,
structural discontinuities such as cutouts are only accounted for in the overall sense.
Any local behavior is then obtained by a local analysis, possibly by another analyst.
The load distribution for the local region is obtained from the global analysis. The
local model is then used to obtain the structural behavior in the specified region. For

example, the global response of an aircraft wing is obtained by a coarse finite element
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analysis. A typical subcomponent of the wing is a stiffened panel with a cutout.
Since cutouts are known to produce high stress gradients, the load distributions
from the global analysis of the wing are applied to the stiffened panel to obtain
the local detailed stress state. One difficulty in modeling cutouts is the need for
the finite element mesh to transition from a circular pattern near the cutout to
a rectangular i)attern away from the cutout. This transition region is indicated
in Fig. 2.47 and will be referred to as a transition square (i.e., a square region
around the cutout used to transition from rings of elements to a rectangular mesh).
This transition modeling requirement impacts both the region near the cutout and
the region away from the cutout. Near the éutout, (iuad;ilateral elements may be
skewed, :tép:ered, and perhapé hav;: é;;;u:nrd;ésiraﬁ)ler a:%i)éét :rr;miib. In adrditrian, as the
mesh near the cutout is refined B)' adding radial “spokes” of nodes and ‘frings;; of
elements, the meshraway from the cutout also becomes refined. For example, adding
radial spokes of nodes near the cutout also adds nodes and elements in the shaded
regions (see Fig. 2.4) away from rtrhe cutout. Tixis appréach may dramatically
increase the computational requirements necessary to obtain the detailed stress
state. Alternate mesh generation techniques using transition zones of triangular
elements or multipoint constraints may be used; however, the time spent by the

structural analyst will increase substantially.

The global modeling herein, although coarse, is sufficient to represent the global
structural behavior. The critical regions have been crudely modeled to represeni;
their effect on the global solution. This modeling step is one of the key components
of the global/local methodology discussed in this chapter since it provides an “ad-
equate” global analysis. Although the critical regions are known for the numerical
studies discussed in a Chapter 5, this a priori knowledge is not required but may

be exploited by the analyst.
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2.3 Local Modeling and Analysis

The local finite element modeling and analysis is performed to obtain a detailed
analysis of the local structural region(s). The local model accurately represents the
geometry of the structure necessary to provide the local behavior and stress state.
The discretization requirements for the analysis is governed by the accuracy of the
solution desired. The discretization of the local model is influenced by its proximity
to a high stress gradient.

One approach for obtaining the detailed stress state is to model the local region
with an arbitrarily large number of finite elements. Higher-order elements may
be used to reduce the number of elements required. Detailed refinement is much
more advantageous for use in the local model than in the global model. The local
refinement affects only the local model, unlike embedding the same refinement in
the global model which would propagate to regions not requiring such a level of
detailed refinement. A second approach is to refine the model based on engineering
judgement. Mesh grading, in which smaller elements are used near the gradient,
may be employed. An error measure based on the change in stress from element to
element may be used to determine the accuracy in the stress state obtained by the
initial local finite element mesh. If the accuracy of the solution is not satisfactory,
additional refinements are required. The additional refinements may be based on
the coarse global model or the displacement field in the local model which suggests
a third approach. The third approach is a multi-level global/local analysis. At
the second local model level, any of the three approaches discussed may be used to
obtain the desired local detailed stress state. Detailed refinement is used for local

modeling in this study.
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2.4 Global/Local Interface Boundary Definition

The definition of the global/local interface boundary is problem dependent.
The location of the nodes on the interface boundary need not be coincident with
any of the nodes in the coarse global model. Kelley [14] concludes that the distance
that the local model must extend away from a discontinuity is highly dependent
upon the coarse model used. The more accurate the coarse model displacement
field is, the closer the local model boundary may be to the discontinuity. This
conclusion is based on the results of a study of a flat, isotropic panel with a central
cutout subjected to uniform tension and extends to other structures with high stress
gradients.

Stresses are generally obtained from a displacement-based finite element anal-
ysis by differentiation of the displacement field. For problems with stress gradients,
‘the element stresses vary from element to element, and in some cases this change,
Ao, may be substantial. The change in stresses, Ao, may be used as a measure of
the adequacy of the finite element discretization. Large Ao values indicate struc-
tural regions where more modeling refinement is needed. Based on this method,
structural regions with small values of Ao have uniform stress states away from
any gradients. Therefore, the global/local interface boundary should be defined in
region(s) with small values of Ao (i.e., away from a stress gradient). Exploratory
studies to define an automated procedure for selecting the global/local interface
boundary have been performed using a measure of the strain energy. The strain
energy per unit area is selected since it represents a combination of all the stress
components instead of a single stress component. Regions with high stress gradients

will also have changes in this measure of strain energy from element to element.
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2.5 Global/Local Interpolation Procedure

The global/local analysis method is used to determine local, detailed stress
states using independent, refined local models which exploit information from less
refined global models. A finite element analysis of the global structure is performed
to obtain its overall behavior. Finite element analyses can be performed in which
the mesh is successively refined until a converged solution is obtained. However, for
some structural analysis problems with high stress gradients, this approach becomes
infeasible due to the computational cost for the global finite element model. In these
cases, a critical region may be identified from the results of the global analysis.
The global solution may be used to obtain an applied displacement field along the
boundary (i.e., boundary conditions) of an independent local model of the critical
region. This step is one of the key components of the global/local methodology;
namely, interpolation of the global solution to obtain boundary conditions for the

local model.

Many interpolation methods are used to approximate functions (e.g., refs. [21-
23]). The interpolation problem may be stated as follows: given a set of function
values f; at n coordinates (z;,y;), determine a “best-fit” surface for these data.

Mathematically, this problem can be stated as

aj f1
a, fg

[S(xiayi)] . == : (2.1)
a, f,.

where S(z;,y;) is a matrix of interpolated functions evaluated at » points, the array
a defines the unknown coeflicients of the interpolation functions, and the array f
consists of known values of the field being interpolated based on n points in the

global model.
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Common interpolation methods include linear interpolation, Lagrangian in-
terpolation and least-squares techniques for polynomial interpolation. Elementary
linear interpolation is perhaps the simplest method and is an often used interpola-
tion method in trigonometric and logarithmic tables. Another method is Lagrangian
interpolation which is an extension of linear interpolation. For this method, data
for n points are specified and a unique polynomial of degree n — 1 passing through
the points can be determined. However, a more common method involving a least—
squares polynomial fit minimizes the square of the sum of the residuals. The draw-
backs of least—squares polynomial fitting include the requirement for repeated so-
lutions to minimize the square of the sum of the residuals, and the development of
an extremely ill-conditioned matrix of coeflicients when the degree of the approx-
imating polynomial is large. A major limitation of the approximating polynomials
which fit a given set of function values is that they may be excessively oscillatory

between the given points or nodes.
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Chapter 3
Mathematical Formulation

Spline interpolation is a numerical analysis tool used to obtain the “best” local
fit through a set of points. Spline functions are piecewise polynomials of degree m
that are connected together at points called knots so as to have m — 1 continuous
derivatives. The mathematical spline is analogous to the draftman’s spline used
to draw a smooth curve through a number of given points. The spline may be
considered to be a perfectly elastic thin beam resting on simple supports at given
poinfs. A surface spline is used to interpolate a function of two variables and re-
moves the restriction of single variable schemes which require a rectangular array of
grid points. The derivation of the surface spline interpolation function used herein is
based on the principle of minimum potential energy for linear plate bending theory.
This approach incorporates a classical structural mechanics formulation into the
spline interpolation procedure in a general sense. Using an interpolation function
which also satisfies the linear plate bending equation provides inherent physical
significance to a numerical analysis technique. The spline interpolation is used
to interpolate the displacements and rotations from a global analysis and thereby
provides a functional description of each field over the domain. The displacement
and rotation fields are interpolated separately; that is, the out-of-plane deflections
and the bending rotations are interpolated independently rather than calculating
the bending rotations by differentiating the interpolated out-of-plane displacement
field. The separate interpolation of displacements and rotations provides a consis-
tent basis for interpolating solutions based on a plate theory with shear flexibility

effects incorporated.
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The derivation of the spline interpolation is presented. The implementation of
the spline interpolation consisting of the spline coefficients, constraint equations,
and the equation solver is discussed. The interpolation procedure which includes

the independent interpolation of the fields is discussed.

3.1 Derivation of the Spline Inéefpélation
The derivation of the spline interpolation used herein follows the approach
described by Harder and Desmarais in reference [24] and is included in Appendix A
for completeness. A spline surface is generated based on the solution to the linear
plate bending equation [24]
DViw =gq (3.1)

The solution of Eq. (3.1) in Cartesian coordinates may be written in the general

form
n
f(z,y) = ag + a1z + azy + Z Firflnr? (3.2)
i=1
where r? = (z — z;)? 4+ (y — y:)?,n is the total number of nodes in the interpolation

region, and ag,a;,a; and F; are undetermined coefficients representing loads.

The n + 3 unknowns (ag, a;, az, F;) are found by solving the set of equations:

YF =0 (3.3)

Y Fizi=0 (3.4)

D Fyi=0 (3.5)
=1
and

filzi,yi) = a0 + a1z; + axy; + ZFjr?jlnr?j; 1=1,n (3.6)
=1
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where r?j = (zi — z;)® + (y: — y;)?, or in matrix form:

fg = Sa (3.7)

where S is the spline coefficient matrix, a is the vector of unknown coeflicients,
and fg is the vector containing the known values of the global field to be interpo-
lated (i.e., displacements). The constraint equations given in Eqs. (3.3)~(3.5) are

used to prevent Eq. (3.1) from becoming unbounded when expressed in Cartesian

coordinates.

Specifically, the vector a is defined to be

'4 ao 3\
ai
az

a= F > (3.8)

The vector fg is defined to be

=4 A (3.9)

f:n‘

The spline coefficient matrix is then given by

r0 O 0 1 1 e 1 b
0 O 0 T Ty . Tn
0 0 0 Y1 Y2 e Yn
1 2z oy r3n(rd, +¢) rhn(rdl, +¢) ... o2 In(r? + €)
S=11 g y2 rhn(ri; +¢€) rdn(rd, +e) ... rZIn(r2 +¢) (3.10)
L1 zn yn r3In(r2; +€) rin(ri, +¢) ... I In(ri +¢).
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where z;,y; and z;,y; in the expression given for r;; are coordinates of nodes in the
interpolation region and € is a parameter used to insure numerical stability for the
case when r;; vanishes.

The matrix S is formed, inverted, and multiplied by fg to compute the vector,

a. The vector a is then used to interpolate the local values through the following

equation:
fi:ao+a1zi+a2yi+ZFjr?jlnr?j; 1=1,2,...,1 (3.11)
=
where for ’rfj = (z; — z;)* + (vi + y;)*, z:,y; are coordinates of the nodes in the

local model, z;,y; are coordinates of the nodes in the interpolation region, I is the
number of nodes of the local model where the interpolated field is required, and the

coefficients, a¢, a;,a;, and F; are contained in a.

Extensions have been made to the formulation presented above to include
higher-order polynomial terms (underlined terms in Eq. (3.12)). The extended

Cartesian form analogous to Eq. (3.2) which also satisfies Eq. (3.1) is written as

fo(2,9) = a0 + a1z + a2y + a32° + a4zy + asy® + asz® + arzly+

aszy’ + agy® + Z Fyr? In(r?) (3.12)
=1
where
rP=(z-2)" +(y—w) (3.13)

and z;,y; are the coordinates of the i-th node in the interpolation region. The
higher-order polynomial terms were added to help represent a higher-order bending
response than was being approximated by the natural logarithm term in the earlier

formulation. The additional terms increase the number of unknown coeflicients and
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constraint equations to n + 10. The n 4 10 unknowns (ay,as,as,...,ay, F;) are

found by solving Eq. (3.12) and the set of equations:

Xn: B =0 z": Fy; =0

=1 i=1

i Flzl - 0 zn: szf = O

=1 i=1

i Fiyi =0 Xn: Fizly; =0 (3.14)
=1 i=1

zn:Fi"’? =0 iFimi:‘/? =0

i=1 i=1

i Fiziy; =0 i Fy? =0
i1 i=1

The matrix form of the extended equations, Sga = fg, is given by

[0 0 O 0 1 1 ... 1 7 ( ao) (0 )
0 O 0 0 T o cee Tn a; 0
0 0 O 0 un Y2 -+ Yn a; 0
0 0 0 0 z? 3 ... 22 a; 0
0 0O 0 0 ziy1 Toy2 ... Tpln ag 0
0 0 0 0 ¥ ¥ ... Wi as 0
0 0 0 0 a3 3 ...z as 0
0 0 0 0 =ziyy iy, ... ziy, ar (=)0 ¢ (3.15)
0 0 0 0 z1y? ziy2 ... T,y ag 0
0 0 0 0 v 5oyl ay 0
1 z; v Qo Q2 .. Qg Fy fi
1 =z vy s Qa1 Qp Qan F; fa
1 zn Yn oo YR Q1 Qnz oo Qun | | Fn fn )
where 2;; = rfj ln(r?j +¢) for i,j = 1,2,...,n and ryj,2;,:, and z;,y; are as

defined in the earlier formulation. The extended local interpolation function is
similar to Eq. (3.12) except that it is evaluated at points along the global/local

interface boundary. That is,
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ford@i,yi) = ao + aye; + axy; | aze;® 4 agriy; + asyit | oage® 4 arr iy

as,yi’ + agy;® + Z Fjrfj ln('r?j); 1= 1,2,...,1 (3.16)
i=1

Upon solving Eq. (3.15) for the coefficients (ao,a;,as,...,a9,F;), Eq. (3.16) is
used to compute the interpolated data at the required local model nodes. That is,

in matrix form:

fg/l = Ss/la (3.17)

3.2 Implementation of Spline Interpolation
The polynomial coefficients (ag,ay,az,...,a9) of Eq. (3.16) are linear combi-
nations of the constants of integration in the polar coordinate solution given in Eq.

(A.1) of Appendix A. The logarithmic coefficients F; are given as

S 4
Fi=— (3.18)

where p; is a point load applied at the coordinate (z;,y;) of the plate.

The first of the constraint equations in Eq. (3.14) states that the sum of the
applied point loads p; is equal to zero. The additional constraint equations state
that the sum of the first, second and third moments introduced by the applied point

loads p; about the z and y axes are equal to zero.

The §2;; terms of the extended spline coefficient matrix given in Eq. (3.15) are
zero when ¢ = j, since 7i; = (z; — 2;)® 4 (yi — ¥:i)® = 0. The matrix, Sg is not a
positive definite matrix since there exists a vector x with a single nonzero element
(i.e., x = {0,0,0,...,1}) for which xTSgx = 0. The positive definite condition
is used to show the stability and convergence of many linear solution techniques.

The zero diagonal presents some difficulty in factoring the S matrix. During the
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factorization process, zero diagonal elements of the matrix may become nonzero,
however, since S;; is zcro, the factorization can not continue without pivoting.
Therefore, a method which employs pivoting is required. Gaussian elimination
with pivoting has been implemented in the global/local interpolation procedure to

invert the spline matrix, Sg.

3.3 Interpolation Procedure

Although Eq. (3.16) is derived from the linear plate bending equation, it may
be used to interpolate each displacement component u,v, and w, independently.
The interpolation of the inplane displacements, v and v is accurate provided the
inplane behavior can be represented by the interpolation function. If the full poly-
nomial and logarithmic expansion of Eq. (3.16) is not required to approximate
the displacement field, the associated coefficients vanish. The rotations 6,,6,, and
8. are interpolated from the rotations in the interpolation region specified in the
global model instead of differentiating the out—of-plane displacement field or dif-
fei‘entiating the interpolation function for the out-of-plane deflection, w, to obtain

the rotations (e.g., w,z).

The global interpolation function fg given in Eq. (3.12) is evaluated at the
nodes in the interpolation region specified within the global model. In the matrix
form of Eq. (3.15), the matrix Sg is based on the coordinates (z;,y;) in the in-
terpolation region. The function values f, are the displacements and rotations at
the nodes in the interpolation region. These displacements and rotations have been
obtained from the global analysis. The vector a = {a;, F;}7 contains the unknown
coeflicients of the interpolation function. The unknown coefficients a are computed
by solving a system of simultaneous equations. The interpolated data along the
global/local interface boundary are obtained by solving the system of equations

given in Eq. (3.17) for fg; using the new spline coeflicient matrix Sg; which is
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based on the coordinates along the global/local interface boundary and the vector

of coefficients a.

In the present study, the interpolation procedure is used to obtain the dis-
placements and‘ rotations on the global/local interface boundary. However, the
interpolation procedure may be used in general to interpolate any field at any lo-
cation in the local model. The interpolation procedure was originally developed for

interpolating wing deflections and computing slopes for aeroelastic calculations.
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Chapter 4
Computational Strategy

The computational strategy described herein is implemented through the use
of the Computational Structural Mechanics (CSM) Testbed (see refs. [25] and
[26]). The CSM Testbed is used to model and analyze both the global and local
finite element models of a structure. Two new computational modules or processors
were developed to perform the global/local interpolation procedure. Various other
Testbed processors are used in the stress analysis. The overall computational strat-
egy for the global/local stress analysis methodology is controlled by a high-level
procedure written using the command language of the Testbed called CLAMP, an
acronym for Command Language for Applied Mechanics Processors (see ref. [26]).
The command language provides a flexible tool for performing computational struc-

tural mechanics research.

4.1 Overview of the CSM Testbed

The field of computerized structural analysis is dominated by two types of com-
puter programs. One type is the huge, 2000 subroutine general purpose program
(see ref. [27]), that is the result of over a hundred man years of effort spanning more
than a decade. The other type is the relatively small, special-purpose code resulting
from a research environment that represents a one- to two-year effort for a specific
research application. This dichotomy has resulted in long delays in making research

technology available for critical structural analysis problems that the aerospace
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community faces. To accelerate the introduction of successful research technol-
ogy into large—scale applications programs, a modular, public-domain, machine-
independent, architecturally-simple, software development environment has been
constructed. This system is denoted the CSM Testbed and its concept is depicted
by a pyramid (see Fig. 4.1). The base of the pyramid is the computer and its
operating system. The computer operating system is provided by the computer
vendor and may be different for each vendor. The Testbed architecture insulates
both the engineer and the methods developer from those differences by providing a
consistent interface across various computer systems. The Testbed command lan-
guage CLAMP procedures and application processors may be accessed as part of a
methods research activity or as part of an application study. The methods devel-
opment environment of the CSM Testbed is further described by Gillian and Lotts
[26]. One goal of the CSM Testbed is to provide a common structural analysis
environment for three types of users — engineers solving complex structures prob-
lems, researchers developing advanced structural analysis methods, and developers

designing the software architecture to exploit multiprocessor computers.

4.2 Global/Local Analysis Processors

Processor SPLN (see ref. [25]) evaluates the spline coefficient matrix Sg(z;, y:)
given in Eq. 3.15. The coordinates of the global model within the interpolation re-
gion are read from the Testbed data library. The spline coeflicient matrix is formed,
inverted, and stored in the database. Other data associated with the interpolation
region (i.e., coordinates and node numbers) are also written to the database. The

matrix is evaluated once for each interpolation region specified.

Processor INTS (see ref. [25]) reads the spline coefficient matrix and the other
associated data from the Testbed data library. In addition, the displacement and

rotation components at each node within the interpolation region are read. Each
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field is independently used to define the vector fg in Eq. 3.15. Processor INTS
solves for a set of interpolation coeflicients a = {a;, F;}7 for each field and performs

the local interpolation for each field to obtain the “boundary conditions” for the

local model.

4.3 Global/Local Analysis Procedures

Runstreams are the vehicle used to perform structural analyses with the CSM
Testbed. The term “runstream” most commonly refers to the file (or files) used to
perform a specific analysis. A runstream will typically contain CLAMP directives
and procedures. The runstream which performs the complete, linear global analysis
of an isotropic panel with a circular cutout discussed in Chapter 5 is given in
Appendix B. A driver procedure calls subsequent lower level procedures to perform

the analysis.

The runstream used to generate the spline coefficient matrix, interpolate the
global solution, and perform the local analysis for the square local model (Model
LC1) discussed in Chapter 5 is given in Appendix C. A driver command file is used
in the analysis. This driver command file calls subsequent CLAMP procedures for
different phases of the analysis. These CLAMP procedures have been included in
Appendix C for completeness. The procedure flow and in-line comments have been

provided for both the global and local analyses.
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Chapter 5

Numerical Results

5.1 Problem Selection

The effectiveness of the computational strategy for the global/local stress anal-
ysis outlined in the previous chapters is demonstrated by obtaining the detailed
stress states for an isotropic panel with a cutout and a blade-stiffened graphite-
epoxy panel with a discontinuous stiffener. The first problem was selected to ver-
ify the global/local analysis capabilities while the second problem was selected to
demonstrate its use on a representative aircraft subcomponent. The objectives of

these numerical studies are:

1. To demonstrate the global/local stress analysis methodology, and
2. To obtain and interrogate the detailed stress states of representative sub-

components of complete aerospace structures.

All numerical studies were performed on the NASA Langley Research Cen-
ter Convex C220 minisupercomputer. The computational effort of each analysis is
quantified by the number of degrees of freedom used in the finite element model,
the computational time required to perform a stress analysis, and the amount of
auxiliary storage required. The computational time is measured in central process-
ing unit (CPU) time. The amount of auxiliary storage required is measured by the
size of the data library used for the input /output of information to a disk during a

Testbed execution.
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5.2 Isotropic Panel Results

Panels with cutouts are common subcomponents of structures in the aerospace
industry. Although, the use of composite materials has become prominent for sec-
ondary aircraft components, most primary aircraft components (i.e., wing, fuselage)
are currently made from isotropic materials (e.g., aluminum). The isotropic panel
with a cutout shown in Fig. 5.1 is an ideal structure to demonstrate the global /local
computational strategy, since closed-form elasticity solutions are available. Elastic-
ity solutions for an infinite isotropic panel with a circular cutout (e.g., Timoshenko
and Goodier [28]), predict a stress concentration factor of three at the edge of the
cutout. The influence of finite-width effects on the stress concentration factors
for isotropic panels with cutouts have been reported by Peterson [29]. The stress
concentration factor as a function of the cutout diameter to width ratio () is
shown in Fig. 5.1. By including finite-width effects, the stress concentration factor

is reduced from the value of three for an infinite panel.

When using theoretical stress concentration factors K, one of the points that
should be borne in mind is that the stress concentration factors should be applied
to the nominal stresses. The nominal stresses are based on the same cross sectional
area as that used for the original determination of the stress concentration factor
[30]. This area is usually the net sectional area A ,.; which remains after any notch

has been cut. For the case of a cutout, the net sectional area corresponds to

Apet = (W — 2rg)h = Wh(1 — 2% (5.1)
where 7y is the radius of the cutout, W is the overall width of the panel and A is
the panel thickness. The nominal longitudinal stress (¢;)nom for a uniform axial

load P can then be expressed as

P
Anet

(5.2)

(az)nom =
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where P is the applied load. From this value, the longitudinal stress resultant

(Nz)nom for an isotropic panel is readily obtained as

(Nz)nom = (Uz)nomh (53)

The stress concentration factor K corresponds to the ratio of the maximum longi-

tudinal stress to the nominal longitudinal stress,

. (N:c)maz

_ (az)maz
Ke = o K= N Vo

(Uz )nom

(5.4)

The global/local linear stress analysis of the isotropic panel with a circular
cutout shown in Fig. 5.1 has been performed. The overall panel length L is 20 in.,
the overall width W is 10 in., the thickness h is .1 in., and the cutout radius r is
0.25 in. This geometry gives a cutout diameter to panel width ratio of 0.05 which
corresponds to a stress concentration factor of 2.85 from Fig. 5.1. The loading is
uniform axial tension with the loaded ends of the panel clamped and the sides free.
The material system for the panel is aluminum with a Young’s modulus of 10,000

ksi and Poisson’s ratio of 0.3.

5.2.1 Global Analysis

Predicting the global structural response of these structures often has many
objectives including overall structural response, stress analysis, and determining
internal loads distributions. Frequently, structural discontinuities such as cutouts

are only accounted for in the overall sense.

The finite element model shown in Fig. 5.2 of the isotropic panel with a circular
cutout is a representative finite element model for representing the global behavior of
the panel as well as a good approximation to the local behavior. The finite element
model shown in Fig. 5.2, will be referred to as the “coarse” global model or Model

G1 in Table 5.1. The finite element model has a total of 256 4-node quadrilateral
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elements, 296 nodes, and 1644 active degrees of freedom for the linear stress analysis.
This quadrilateral element corresponds to a flat C! shell element which is based on
a displacement formulation and includes rotation about the outward normal axis.
Originally developed for the computer code STAGS (see refs. [31, 32]), this element
has been installed in the CSM Testbed software system and denoted ES5/E410 (see
ref. [25]).

Contour plots of the inplane stress resultants obtained using the “coarse” global
model are shown in Figs. 5.3 and 5.4. The longitudinal stress resultant N, distri-
bution shown in Fig. 5.3 reveals several features of the global structural behavior of
this panel. First, away from the cutout, the N, distribution in the panel is uniform.
Secondly, the N, load near the center of the panel is much greater than the N load
in other portions of the panel due to the redistribution of the N load as a result of
the cutout. Thirdly, the N, load at the edge of the cutout at ninety degrees away
from the stress concentration is small relative to the uniform far-field stress state.
The transverse inplane stress resultant N, distribution shown in Fig. 5.4 indicates
a smaller stress gradient ninety degrees from the N, gradient. This gradient may

have a secondary influence on the definition of the global/local interface boundary.

The distribution of the longitudinal stress resultant N, at the panel midlength
normalized by the nominal stress resultant is shown in Fig. 5.5 as a function of
the distance from the cutout normalized by the cutout radius. The results indicate
that high inplane stresses and a high gradient exist near the cutout. However, a
stress concentration factor of 2.06 is obtained from a linear stress analysis using
the “coarse” finite element model (see Fig. 5.2). This value is 28% lower than
the theoretical value of 2.85 reported by Peterson [29]. Therefore, even though

the overall global response of the panel is qualitatively correct as indicated by the
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stress resultant contours in Figs. 5.3 and 5.4, the detailed stress state near the

discontinuity is inaccurate.

Accurate detailed stress distributions require a finite element mesh that is sub-
stantially more refined near the cutout. Adding only rings of elements (Model G2
in Table 5.1) does not affect the discretization away from the cutro{x'tr; howevei', the
stress concentration factor is still 22% lower than the theoretical value. To obtain
a converged solution for the stress concentration factor, a sequence of successively
refined finite element models were developed by increasing the number of radial
spokes of nodes and rings of elements in the region around the cutout. A con-
verged solution is obtained using a total of 3168 4-node quadrilateral shell elements
(ES5/EA410) in the global model. Using an intermediate refined finite element model
with a total of 832 4-node quadrilateral elements, 888 nodes, and 5156 active de-
grees of freedom, a stress concentration factor of 2.72 is obtained which is within
4.6% of the theoretical solution. This finite element model is referred to as the
“refined” global model or Model G3 in Table 5.1. Normalized longitudinal stress
resultant N, distributions are shown in Fig. 5.5 for the “coarse” global model (G1)
and the “refined” global model (G3). The stress gradient for this panel becomes
nearly zero at a distance from the center of the panel of approximately six times

the cutout radius.

The inplane stress resultant distributions obtained using the “refined” global
model are qualitatively the same as the distributions obtained for the “coarse” global
model (shown in Figs. 5.3 and 5.4, respectively). The value of the longitudinal
inplane stress resultant N, near the center of the panel is larger for the “refined”
model than for the “coarse” model indicating that the refined model more accurately

predicts the stress gradient near the cutout. The N, load at the edge of the cutout
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ninety degrees away from the stress concentration is closer to zero for the “refined”

model than for the “coarse” model.

The distribution of the strain energy for Model G1 is shown in Fig. 5.6. The
change in the strain energy per unit area within the transition square indicates
that a high stress gradient exists near the cutout and rapidly decays away from the
cutout. These results are consistent with the structural analyst’s intuition, and the
local analyses described subsequently will further interrogate the region near the

cutout.

5.2.2 Local Analyses

A global/local analysis capability provides an alternative to global mesh re-
finement and a complete solution using a more refined mesh. For this example,
the “critical” region is well known and easily identified by even a casual examina-
tion of the stress resultant distributions given in Fig. 5.3. The global model, the
interpolation region and the local models considered are shown in Fig. 5.7. The
global model corresponds to the “coarse” global model (G1) and the shaded region
corresponds to the interpolation region which is used to generate the spline matrix
and to extract boundary conditions for the local models. As indicated in Fig. 5.7,
two different local models are considered: one square and one circular. Both local
models completely include the critical region with the stress concentration. The
boundary of the square local model coincides with the boundary of the transition
square in the global model. The circular model is inscribed in the transition square.
That is, the outer radius of the circular model is equal to half the length of a side of
the transition square. Both local models (Models LS1 and LC1 in Table 5.1) have
the same number of 4-node quadrilateral shell elements (512), number of nodes
(544) and number of degrees of freedom (3072). Both local models have only 62%

of the elements used in the refined global analysis. The global/local interpolation
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for both local models is performed from the data obtained from the “coarse” global
model analysis. The radius of the interpolation region R is 5.7r¢ which includes

the 48 data points within the transition square of the global model.

The distribution of the longitudinal stress resultant N, at the panel midlength
normalized by the nominal stress resultant using the square local model is shown in
Fig. 5.8a as a function of distance from the cutout normalized by the cutout radius.
These results indicate that the global/local analysis based on the coarse global
solution and the square local model accurately predicts the stress concentration
factor at the cutout as well as the distribution at the global/local interface boundary.
A stress concentration factor of 2.76 is obtained which is within 1.5% of the “refined”
global model (G3) solution and 3.2% of the theoretical solution. A contour plot of
the longitudinal stress resultant distribution is given in Fig. 5.8b and indicates that

the local solution correlates well overall with the global solution shown in Fig. 5.3.

The distribution of the longitudinal stress resultant N, at the panel midlength
normalized by the nominal stress resultant obtained using the circular local model
is shown in Fig. 5.9a as a function of distance from the cutout normalized by the
cutout radius. These results indicate that the global/local analysis based on the
coarse global solution and the circular local model accurately predicts the stress
concentration factor at the cutout. A stress concentration factor of 2.75 is obtained
which is within 1.5% of the “refined” global model (G3) solution and 3.2% of the
theoretical solution. At the global/local interface boundary, the results from the
circular local model differ slightly from the results obtained from the refined global
model analysis. This difference is attributed to interaction between the “coarse”
global model, the interpolation region, and the location of the global/local interface

boundary. A contour plot of the longitudinal stress resultant distribution is given
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in Fig. 5.9b and indicates the overall correlation with the distributions obtained

using the global models.

The interaction between the global model, the interpolation region, and the
location of the global/local interface boundary is assessed below. This assessment
involves refining the global model in the transition square, varying the radius of
the interpolation region Ry and varying the radius of the local model Ry. Using an
interpolation region defined as Ry = 147 (72 points from the global model), several
local models are considered in which R is increased from twice the cutout radius
to five times the cutout radius. The results in Fig. 5.10a are based on using the
coarse global model (G1) for the global solution. These results indicate that the
local solution deteriorates as the global/local interface boundary is moved closer to
the cutout. The results in Fig. 5.10b are based on a slightly more refined global
model(G2) for the global solution. This global model has two additional rings of
elements in the transition square. Comparing the results in Figs. 5.10a and 5.10b
reveals the interaction between the global model and the location of the interface
boundary. To obtain an accurate local solution for the case when the global/local
interface boundary is located within a region with a high stress gradient requires
that sufficient data from the global model be available in the area to provide accurate
“boundary conditions” for the local model. These results indicate that by adding
Just two rings of elements near the cutout (Model G2), the extraction of the local
model boundary conditions from the spline interpolation is improved such that the

global/local interface boundary may be located very near the cutout.

The influence of the radius of the interpolation region on the local solution is
determined to be minimal provided the global model discretization is adequate. For

the cases considered, identical local solutions are obtained using an interpolation
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region larger than the local model or an interpolation region which coincides with

the local model.

For the isotropic panel with a central cutout, the critical region is known. It
may be desirable to model only a portion (e.g., part of annular plate or sector) of the
structural region around the cutout. Three sector models were considered including
a £45° sector, a £67.5° sector, and a +£90° sector, each with its center at 90° from
the loading direction. The interpolationis performed from the “coarse” global model
solution. The sector local analyses introduce several additional factors not evident
in the previous local analyses. The longitudinal stress resultant N, distributions at
the panel midlength for the sector local models differ slightly at the cutout edge from
the distribution obtained for the circular local model. The N, distribution around
the circumference of the cutout reveals an inaccurate distribution at the straight
edges of the sectors. The error in the N, distribution along the sector straight
edges may be attributed to their proximity to the gradient of the longitudinal stress
resultant. The straight edges of the smaller £45° sector are near the N, stress
resultant gradient, while the straight edges of the +90° sector are in a region in
which a secondary gradient associated with the transverse inplane stress resultant,
Ny (see Figs. 5.3 and 5.4), may affect the accuracy of the interpolated boundary
conditions. Applying boundary conditions at the cutout edge may also be, in effect,
over constraining the local structural model. These sector analyses reinforce the

importance of the local model boundary location.

The influence of the global model discretization on the accuracy of the solu-
tion obtained by the +90° sector local model was assessed. The interpolation was
performed from successively more refined global models. As the global model re-
finement was increased, a more accurate N, distribution was obtained. The results

from the sector analyses reduce the feasibility of modeling a portion of the cutout
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in this manner. The global modeling requirements must be increased substantially
to maintain the same level of accuracy for the sector local model analyses as for the

circular local model analysis.

5.2.3 Computational Requirements

A summary of the computational requirements for the global and local anal-
yses of the isotropic panel with the circular cutout is given in Table 5.2. The
computational cost in central processing unit (CPU) seconds of the local analyses
is approximately 74% of the CPU time of the refined global analysis. The CSM
Testbed data libraries for the local analyses are 41% smaller than the data library
for the refined global analysis. The local models have 60% and 16% of the total
number of degrees of freedom required for the refined model (G3) and converged

global model, respectively.

5.2.4 Usage Guidelines

Usage guidelines derived from the global/local analysis of the isotropic panel
with a circular cutout are as follows. An “adequate” global analysis is required to
ensure a sufficient number of accurate data points to provide accurate “boundary
conditions” for the local model. When the global/local interface boundary, Ry,
is within the high stress gradient (i.e., within a distance of two times the cutout
radius from the cutout edge), the importance of an “adequate” global analysis in
the high gradient region is increased. The interpolation region should coincide with
or be larger than the local model. To satisfy the compatibility requirements at the
global/local interface boundary, the local model boundary R should be defined
sufficiently far from the cutout (i.e., a distance of approximately six times the

radius from the cutout).
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5.3 Blade-Stiffened Panel Results

Discontinuities and eccentricities are common in aircraft structures. For exam-
ple, the lower surface of the Bell-Boeing V-22 tilt-rotor wing structure has numer-
ous cutouts and discontinuous stiffeners (see Fig. 5.11). Predicting the structural
response of such structures in the presence of discontinuities, eccentricities, and
damage is particularly difficult when the component is built from graphite-epoxy
materials or is loaded into the nonlinear range. In addition, potential damage of
otherwise perfect structures is often an important design consideration. Recent in-
terest in applying graphite—epoxy materials to aircraft primary structures has led
to several studies of postbuckling behavior and failure characteristics of graphite-
epoxy components (see ref. [33]). One goal of these studies has been the accurate
prediction of the global response of the composite structural component in the post-
buckling range. In one study of composite stiffened panels, a blade-stiffened panel
was tested (see ref. [34]). A composite blade-stiffened panel was proof-tested and
used as a “control specimen”. The panel was subsequently used in a study on dis-
continuities in composite blade-stiffened panels. The global structural response of
these composite blade-stiffened panels presented in reference [35] correlate well with
the earlier experiment data. The composite blade-stiffened panel with a discontin-
uous stiffener shown in Fig. 5.12 is representative of a typical aircraft structural
component and will be used to demonstrate and assess the global/local methodol-
ogy. This problem was selected because it has characteristics which often require a
global/local analysis. These characteristics include a discontinuity, eccentric load-
ing, large displacements, large stress gradients, high inplane loading, and a brittle
material system. This problem represents a generic class of laminated compos-
ite structures with discontinuities for which the interlaminar stress state becomes

important. The local and global finite element modeling and analysis needed to
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predict accurately the detailed stress state of flat blade-stiffened graphite—epoxy

panels loaded in axial compression is described in this section.

The overall panel length L is 30 in., the overall width W is 11.5 in., the stiffener
spacing b is 4.5 in., the stiffener height h, is 1.4 in., and the cutout radius ry is
1.0 in. The three blade-shaped stiffeners are identical. The loading is uniform axial
compression. The loaded ends of the panel are clamped and the sides are free. The
material system for the panel is T300/5208 graphite-epoxy unidirectional tapes with
a nominal ply thickness of 0.0055 in. Typical lamina properties for this graphite-
epoxy system are 19,000 ksi for the longitudinal Young’s modulus, 1,890 ksi for the
transverse Young’s modulus, 930 ksi for the shear modulus, and 0.38 for the major
Poisson’s ratio. The bladestiffeners are 24-ply laminates ([£45/020/F45]) and the
panel skin is a 25-ply laminate ([+45/0;/F45/05/+45/03/F45/05/+45/0;/F45)).

End-shortening results are shown in Fig. 5.13 for the “control specimen” and
for the configuration with a discontinuous stiffener. These results indicate that the
presence of the discontinuity markedly changes the structural response of the panel.
The structural response of the “control specimen” is typical of stiffened panels. Two
equilibrium configurations are exhibited; namely, the prebuckling configuration and
the postbuckling configuration. The structural response of the configuration with
a discontinuous stiffener is nonlinear from the onset of loading due to the eccentric
loading condition and the cutout. The blade-stiffened panel with a discontinuous
stiffener was tested to failure. Local failures occurred prior to overall panel failure

as is evident from the end-shortening results shown in Fig. 5.13.

5.3.1 Global Analysis

A global linear stress analysis of the composite blade-stiffened panel with a
discontinuous stiffener was performed for an applied load corresponding to P/EA

of 0.0008 (:.e., an applied compressive load P of 19,280 pounds normalized by the

41



extensional stiffness EA). At this load level, the structural response of the panel is
essentially linear. Four-node quadrilateral elements (ES5/E410) were used in the
linear analysis. Out-of-plane deflections are present, however, due to the eccentric
loading condition caused by the discontinuous stiffener. Several global finite element
models are considered as indicated in Table 5.3 to obtain a converged solution for
comparison purposes since the theoretical solution is not available. The value of
the longitudinal stress resultant at the edge of the cutout changed by less than 2%
between Models G2 and G4. Therefore, Model G1 will be referred to as the “coarse”
global model (see Fig. 5.14), Model G2 will be referred to as the “refined” global

model, and Model G4 will be referred to as the “converged” global model.

The distribution of the longitudinal stress resultant N, normalized by the ap-
plied running load (N;)osg (i.e., applied load divided by the panel width) as a
function of the lateral distance from the center of the panel normalized by the ra-
dius of the cutout is shownin Fig. 5.15 for both the “coarse” (G1) and the “refined”
(G2) global models. These results are similar to those obtained for the isotropic
panel with a cutout. The maximum longitudinal stress resultants (N.)mqz nor-
malized by the average running load (N.).,, are given in Table 5.3. The results
obtained using the coarse global model adequately predicts the distribution away
from the discontinuity but underestimates (by 24%) the stress concentration at the

edge of the discontinuity.

Oblique views of the deformed shape with exaggerated deflections are shown
in Figs. 5.16 and 5.17 for the coarse global model with contour plots of the inplane
stress resultants N, and Ny, respectively. The distribution indicates that the model
provides good overall structural response characteristics. The N, distributions re-
veal several features of the global structural behavior of this panel. First, away

from the discontinuity, the N, distribution in the panel skin is nearly uniform and
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less than the value of the N, load in the outer two blade-stiffeners. Second, load
is diffused from the center discontinuous stiffener into the panel skin rapidly such
that the center stiffener has essentially no N, load at the edge of the cutout. Third,
the N load in the outer stiffeners increases towards the center of the panel and is
concentrated in the blade free edges (i.e., away from the stiffener attachment line
at the panel skin). Fourth, the N, load in the panel skin near the center of the

panel is much greater than the N, load in other portions of the panel skin.

The distribution of the strain energy for Model G1 is shown in Fig. 5.18. The
change in the strain energy per unit area within the transition square again indicates
that a high stress gradient exists near the discontinuity and rapidly decays away
from the discontinuity. These results are consistent with the structural analyst’s
intuition, and the local models described subsequently will further interrogate the
region near the discontinuity. For this load level, the skin-stiffener interface region
has not yet become heavily loaded. However, this region will also be studied further
to demonstrate the flexibility of the global/local stress analysis procedure presented

herein.

5.3.2 Local Analyses

A global/local analysis capability provides an alternative approach to global
mesh refinement and a complete solution using a more refined mesh. For this
example, one “critical” region is easily identified by even a casual examination of the
stress resultant distributions given in Fig. 5.16. A second critical region that may
require further study is indicated by the slight gradient near the intersection of the
blade-stiffener and the panel skin as shown in Fig. 5.15. Skin-stiffener separation
has been identified as a dominant failure mode for stiffened composite panels (e.g.,
see refs. [33-37]). The global model, the interpolation regions and the local models

considered are shown in Fig. 5.19. The global model corresponds to the “coarse”

43



global model (G1) and the shaded regions correspond to the interpolation regions
for the local models. As indicated in Fig. 5.19, two different critical regions are
considered. One region is near the discontinuity and again square and circular local
models are used in the local analysis. The boundary of the square local model
coincides with the boundary of the transition square in the global model. The
circular model is inscribed in the transition square. That is, the outer radius of the
circular model is equal to half the length of a side of the transition square. The
other region is near the skin-stiffener interface region at the panel midlength for
one of the outer stiffeners. The global/local interpolation for all local analyses is
performed from the data obtained from the “coarse” global model analysis. Two
interpolation regions were used for each of the local analyses. The first interpolation
region, specified in the plane of the panel skin, is used to obtain the boundary
conditions on the global/local interface boundary of the panel skin. The second
interpolation region, specified in the plane of the stiffener, is used to obtain the
boundary conditions on the global/local interface boundary of the stiffener. The
boundary conditions for the panel skin and the stiffener were interpolated separately.
Compatibility of the displacements and rotations at the skin-stiffener intersection
on the global/local boundaries was enforced by imposing the boundary conditions

obtained for the panel skin.

The local models (Models LS1 and LC1 in Table 5.3) of the first critical region
near the discontinuity have the same number of 4-node quadrilateral shell elements
(576), number of nodes (612) and number of degrees of freedom (3456). Both local
models have only 56% of the elements used in the refined global analysis. The
results for the two local models are nearly the same, and therefore only the results
of the circular local model (LC1) are shown in Table 5.3. The distribution of the

longitudinal stress resultant N, at the panel midlength normalized by the average
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running load (N;)gve for Model LC1 is shown in Fig. 5.20a as a function of lateral
distance from the cutout normalized by the cutout radius. These results indicate
that the global/local analysis based on the coarse global solution and using either
the square or circular local model accurately predicts the stress concentration factor
at the cutout as well as the distribution at the global/local interface boundary. A
contour plot of the longitudinal stress resultant distribution is given in Fig. 5.20b.
These results indicate that the local solution correlates well with the global solution

shown in Fig. 5.16.

The second critical region near the intersection of the outer blade—stiffener and
the panel skin at the midlength is studied further. Three different local finite el-
ement models of this critical region are considered as indicated in Table 5.3. The
first, Model LR1, has the same number of nodes (25) and number of elements (16)
within the critical region as the coarse global model (G1). The second, Model LR2,
has the same number of nodes (45) and number of elements (32) within the critical
region as the refined global model (G2). The third and most refined model, Model
LR3, has 117 nodes, 96 elements and 462 degrees of freedom. The longitudinal stress
resultant N, distributions obtained for the local models (LR1 and LR2) correlate
well with the N, distributions for the coarse and refined global models (Models G1
and G2). However, these models are not sufficiently refined in the skin-stiffener
interface region to accurately predict the gradient at the skin—stiffener intersection.
The distribution of the longitudinal stress resultant N, normalized by the applied
running load as a function of the lateral distance from the center of the panel nor-
malized by the radius of the cutout is shown in Fig. 5.21. These results indicate
that the global/local analysis using the local model Model LR3 predicts a higher
gradient at X = —4.5 in the skin-stiffener interface region than the other global
and local analyses. A third global model Model G3 is used to investigate the local

structural behavior predicted by Model LR3. The global analysis performed with
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Model G3 predicts the same local behavior as the analysis performed with Model
LR3 as indicated in Fig. 5.21. Several factors should be borne in mind. First, the
local analysis revealed local behavior at the skin-stiffener interface region that was
not predicted by either of the global models. Second, the global modeling require-
ment for examining the skin-stiffener interface region is substantial. Because the
global models were generated to predict the stress distribution around the disconti-
nuity, additional radial “spokes” in the transition square are required to refine the
panel skin in the skin-stiffener interface region in the longitudinal direction. Third,
the global /local analysis capability provides the analyst with the added modeling
flexibility to obtain an accurate detailed response at multiple critical regions (i.e., at
the discontinuity and at the skin-stiffener interface region) with minimal modeling

and computational effort.

5.3.3 Computational Requirements

A summary of the computational requirements for the global and local analyses
of the graphite-epoxy blade-stiffened panel with the discontinuous stiffener is given
in Table 5.4. The computational cost in CPU seconds of the local analyses around
the discontinuity is approximately 57% of the CPU time of the refined global anal-
ysis. The CSM Testbed data libraries for the local analyses are approximately half
of the size of the data library for the refined global analysis. The local models have
55% and 16% of the total number of degrees of freedom required for the refined
model (G2) and converged global model (G4), respectively. The CPU time for the
refined local analysis (LR3) of the skin-stiffener interface region is 24% of the CPU
time required for the global analysis with Model G3. The size of the data library
for the local analysis is 5% of the size of the data library required for the analysis
with Model G3.
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5.3.4 Usage Guidelines

Usage guidelines derived from the global/local analysis of the blade-stiffened
panel with a discontinuous stiffener are as follows. An “adequate” global analysis
is required to ensure a sufficient number of accurate data points to provide accu-
rate “boundary conditions” for the local model. When the global/local interface
boundary, Ry, is within the high stress gradient (i.e., within a distance of two times
the cutout radius from the cutout edge), the importance of an “adequate” global
analysis in the high gradient region is increased. The interpolation region should
coincide with or be larger than the local model. To satisfy the compatibility require-
ments at the global/local interface boundary, the local model boundary R should
be defined sufficiently far from the cutout (i.e., a distance of approximately six
times the radius from the cutout). For the blade-stiffened panel, two interpolation
regions should be specified, one for the interpolation of the boundary conditions on
the boundary of the panel skin and a second for the interpolation of the boundary

conditions on the outer edges of the stiffeners.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

A global/local analysis methodology for obtaining the detailed stress state of
structural components is presented. The methodology presented is not restricted to
having a priori knowledge of the location of the regions requiring a detailed stress
analysis. The effectiveness of the global/local analysis capability is demonstrated
by obtaining the detailed stress states of an isotropic panel with a cutout and a

blade-stiffened graphite—epoxy panel with a discontinuous stiffener.

Although the representative global finite element models represent the global
behavior of the structures, substantially more refined finite element meshes near the
cutouts are required to obtain accurate detailed stress distributions. Embedding a
local refined model in the complete structural model increases the computational
requirements. The computational effort for the independent local analyses is less
than the computational effort for the global analyses with the embedded local re-

finement.

The global/local analysis capability provides the modeling flexibility required
to address detailed local models as their need arises. This modeling flexibility was
demonstrated by the local analysis of the skin—stiffener interface regions of the
blade-stiffened panel with a discontinuous stiffener. This local analysis revealed

local behavior that was not predicted by the global analysis.

The definition of the global/local interface boundary affects the accuracy of the

local detailed stress state. The strain energy per unit area has been selected as a
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means for identifying a critical region and the location of the associated global /local
interface boundary. The change in strain energy from element to element indicates
regions with high stress gradients (i.e., critical regions). A global/local interface

boundary is defined outside of a region with large changes in strain energy.

The global/local analysis capability presented provides a general-purpose anal-
ysis tool for use by the aerospace structural analysis community by providing an
efficient strategy for accurately predicting local detailed stress states that occur in
structures discretized with relatively coarse finite element models. The coarse model
represents the global structural behavior and approximates the local stress state.
Independent, locally refined finite element models are used to accurately predict
the detailed stress state in the regions of interest based on the solution predicted

by the coarse global analysis.

6.2 Recommendations
Future studies related to the present work are recommended. The present work
provides initial capabilities for the global/local linear stress analysis of structural

components and subcomponents. Additional recommended studies include:

1. Extending the global/local interpolation procedure to a three-dimensional
domain;

2. Automating the procedure for selecting the global/local interface bound-
ary;

3. Developing a multiple local region analysis strategy which exploits concur-

rent processing;

4. Extending the global/local analysis strategy to geometrically nonlinear

problems; and,

5. Assessing the use of hierarchical plate theories for the local stress analyses.
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APPENDIX A
Derivation of Harder—-Desmarais Spline Interpolation Function
The derivation of the spline interpolation function used in this study is given
in this appendix and also in reference [24]. The solution to Eq. (3.1) in polar

coordinates is given in reference [28] as
w(r) = A + Br? + Clor + Drlnr? (A1)

The constant, C, in the term Clnr, must be equal to zero to maintain a bounded
solution at r = 0.
The first step is to determine the deflection due to a point load at the origin.

From equilibrium, the point load at the origin may be expressed as
P= 27”'Qr (A2)

where Q, = D4 (V?w). Differentiating Eq. (A.1) and substituting into Eq. (A.2)

yields D = 1z25. Therefore, the deflection due to a point load at the origin is

w(r)=A+ Br? + (lﬁfrD )rzlnrz (A.3)

The deflection of the entire spline will be taken as the sum of the solutions of Eq.
(A.3)

w(z,y) = Z(A,- + B;r? + T;;—f—p—rflnr?) (A.4)
i=1

where r? = (z — z;)? + (v — vi)?, n is the total number of nodes in the interpolation
region which contains the local model.
The surface spline should be flat a long distance from the applied loads. Let

z =rcosf,y = rsinf, and expand Eq. (A.4) for large r.
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9) = r2lnr? Di 2 . 2 ;' . i
w(r,8) = r’lnr ;_1671'.0 +7r ;B 2rlnr ;(m cos 8 +y; sm&)-——wﬂ_D
e s bi : 2N,z , 2\ Di
+2ri§=;(z, cosf + y; smﬁ)(wﬂ_D — Bi) +1nr ;(:::i +y,~)Ié—7r—D— +... (A.5)

The unbounded terms of the order r?lnr?,r%, and rlnr? can be eliminated from Eq.

(A.5) by setting

D P=0 (A.6)
> ziPi=0 (A7)
D wPi=0 (A.8)
and
> Bi=0 (A.9)
Expanding r? and substituting into Eq. (A .4) yields
w(z,y) = ZA; + (2? + y?) ZB,- + ZB,;(E? +y?) -2z ZB,’:B,‘
i=1 i=1 i=1 i=1
-2 iYi ——=Tilnr; :
y;By +§16”Drlnr, (A.10)
Recall that
Y Bi=0 (A.11)
i=1
and letting
ao = ) [Ai+ Bi(z} +y])] (A.12)

a1 = -2 Biz; (A.13)

ap; = —2 Z Biy; (A.14)



and

. _DPi
Fi = T6nD (A.15)
Eq. (A.4) reduces to
w(z,y) = a0 + a1z + a2y + Z Firflnr? (A.16)

i=1

where ag,a;,a; and F; are undetermined coeflicients.
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APPENDIX B

Runstream for the Global Analysis of the Isotropic Panel

The CSM Testbed

a circular cutout. The

analysis. A driver procedure is used to perform the global analysis. The additional
lower level procedures are also listed for completeness. The procedure flow is given

before the call to the driver procedure and limited in-line documentation is given.

cd /sexr/jbr
rm ISO_FOC.LO1
rm PANEL.PRC

is used for the global analysis of an isotropic panel with

Testbed command language (see ref. [25]) is used in the

time $CSM_EXE/testbed << *EQOIx*

*set echo=off
*set plib = 28
*0PEN 1 ISO_FO0C.LO1

*0PEN/NEW 28 PROCLIB.L28
*add ’*$GEN_UTIL/utilities.prc’
*add ’/usr/ul/knight/csm/prc/utilities/stress.clp’

. Procedure Flow

GLOBAL -- Perform analysis

MESH_GLOBAL --
MATDAT --

Create data for processor CSM1
Create data for processor LAU

*CALL GLOBAL ( es_proc = ES5; es_name = E410; location = ’ALL’;
precision = 1; NNPE = 410; IOPT = 1; NRINGS =
NSPOKES = 32; NELS = 0; NELX = 8; NELE = 2; --
NELBS = 2; RAT = 0.; A = 2.; direction=1 )

*PROCEDURE GLOBAL (

*call ES ( function
es_name =

es_proc ES1 ; es_name = EX47 ; --
es_pars 0.0 ; direction = 1;--
location = ’NODES’; precision = 2; --
NNPE = 4; IOPT = 7; NRINGS = 4; --
NSPOKES = 16; NELS = 2; NELX = 6; --
NELE = 2; NELBS = 2; RAT = 0; A = 4 )

It u

= JDEFINE ELEMENTS’ ; es_proc = [es_procl; --

[es_name] ; es_pars = [es_pars] )

*CALL MESH_GLOBAL ( NNPE = [nnpel]; IOPT = [iopt]; --

NRINGS = [nrings]; NSPOKES = [nspokes]; --

56



NELS = [nels]; NELX =
NELBS = [nelbs]; NELE
RAT = [rat]; A = [A] )

[nrelx]; --
= [nele]; --

[XQT CcsM1
RESET LOAD=TENS
[xqt tab
online=0
*ADD ’/scr/jbr/PANEL.PRC
*CALL PANEL_START
JLOC
*CALL PANEL_JLOC
MATC
11.00.3
CON 1
*CALL PANEL_BC
*CALL MATDAT
[xqt lau
[xqt ELD
online=0
*CALL PANEL_CONN
STOP
*CALL ES ( function = ’DEFINE FREEDOMS?’)
[xqt aus
sysvec : APPL MOTI
*CALL PANEL_AD
STOP
[xqt E
[xqt RSEQ
reset maxcon=41 method=1
[xqt TOPO
RESET MAXSUB = 40000,lram = 8196

——— = —— - -

[xqt INV
online = 2
reset lra = 7168
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reset dzero=1.E-10
reset spdp = [precision]
[xqt AUS

[XQT SSOL
RESET SET=1, CON=1

*call STRESS ( STRESS = <true> ; LOCATION = [location]; --
DIRECTION = [direction]; SMOOTH = <true> )
*call STRESS ( STRESS = <true> ; LOCATION = ’'NODES’; --
DIRECTION = 0 )
*end

*procedure MESH_GLOBAL ( NNPE = 9; IOPT = 7; NRINGS = 4; --
NSPOKES = 16; NELS = O; NELX = 3; --
NELBS = 2; NELE = 1; RAT = 0; A = 4. )
[xqt aus

. build table of integer user data

%ABLE(NI =33,NJ=1,itype=0): CSMP FOCS 1 1
J=1: [nnpe] [1opt] [nrings] [nspokes] >

001 111> Edge x=0.0 (Edge 1)

000 000> . Edge y=A+2x(nele+nelbs) (Edge 2)

101 111> . Edge x=Al (Edge 3)

000 000> . Edge y=0.0 (Edge 4)

001 111> . Corner at (0.,0.)

011 111> . Corner at (0.,[A+2*#(nele+nelbs)])

111 111> . Corner at (Al,[A+2*(nele+nelbs)])

101 111> . Cormer at (41,0.)

011 111> . Stiffeners at x=0.0

111 114> . Stiffeners at x=Al

. iwall jwall iref jref nelx nele nelbs nels ifill

1 1 i 1 [nelx] [nele] [nelbs] [mnels] ©

. build table of floating point user data
TABLE(NI 10,NJ=1): CSMP FOCS 1 2
a dhole xc¢ yc zc rat al be bs ks

J=1: [A] .5 <[Al/2.> 0.0 0.0 [rat] 20.0 1. 4. 1.4
*END

*procedure MATDAT
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[xqt aus

. E11 NU12 E22 G12 Gi3 G23 ALPHA1 ALPHA2 WTDEN

TABLE(NI=16,NJ=1): OMB DATA 1 1

TABLE (NI=3,NJ=1,itype=0): LAM OMB 1 1
J=1 : 1 .1 0.00
*end
[xqt exit
*EQI*
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APPENDIX C
Runstream for the Global Analysis of the Isotropic Panel
A driver command file is used to perform the local analysis. The command file calls
several CLAMP procedures during the analysis. Additional lower level procedures
are listed for completeness. The procedure flow is given before the call to each

procedure in the driver command file and limited in-line documentation is given.

cd /scr/jbr

rm LOC_CSM1.L01 PANEL.PRC

time $CSM_EXE/testbed << xEDI_MAIN*
*set echo=off

*set plib = 28

*0PEN/new 1 LOC_CSM1.LO1

*0PEN/NEW 28 PROCLIB.L28

*open/old 2 glob216.101

*add ’$GEN_UTIL/utilities.prc’

*add ’/usr/ul/knight/csm/prc/utilities/utilities.prc’
*add '$ISO_PANEL/local/local.prc’

*def/a es_proc = ’ES5’
*def/a es_name = 'E410’
*def/i nnpe = 410
*def/i iopt = 1
*def/i nrings = 16 . number of rings of elements
*def/i nspokes = 32 . number of spokes of nodes

. Procedure Flow
FORM_SPLN_MATR -- Forms and inverts spline coefficient matrix and
reads interpolation region data

*CALL FORM_SPLN_MATR ( nels = 0 )

. Procedure Flow
FORM_MOD_CSM1 -- Defines global/local interface boundary and
uses processor CSM1 to generate the model
MESH_LOCAL
BOUN_COND
FORM_PANEL_BOUN
FORM_STIFF_BOUN

;CALL FORM_MOD_CSM1 ( es_proc = <es_proc>; es_name = <es_name>; =--
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nrings = <nrings>; nspokes = <nspokes>; --
nels = 0; --

NELX = 0; NELE = O; NELBS = 0; --

ndof = 6 )

. Procedure Flow
INTERP_FIELD -- Generates interpolated local field for each degree
of freedom

*CALL INTERP_FIELD ( nels = 0 )

. Procedure Flow

SOLVE -- Applies ‘‘boundary conditions’’ and performs local
analysis
FORM_APPL _MOTI
*CALL SOLVE ( direction = 1; location = ’ALL’; num_strs = 3; --
nels = 0; --
ndof = 6; nrings = <nrings>; nspokes = <nspokes> )
[XQT EXIT
*EOI_MAIN*

. procedure FORM_SPLN_MATR - forms the spline interpolation matrices
for the skin and the stiffeners if
. applicable
*PROCEDURE FORM_SPLN_MATR ( corneri = 9.,4.,0.; --
corner2 = 11.,6.,0.; --
nels 0; 1di = 2; hs = 1.4; --
pdeg = 3; be = 1.25 )

*def/i nels == [nels]
*def/e c1[1:3] [corneri]
*def/e c2[1:3] [corner2]

. *0PEN 2 ?/scr/jbr/glob216.101’

*COPY 1 = [1di],2:15

*COPY 1,PROP.*.* = [1di],PROP.*.x*

*COPY 1,MATC.*.%* = [1di],MATC.*.*

*COPY 1,STAT.DISP.* = [1di],STAT.DISP.=*
*CLOSE [1di]

[xqt SPLN
RESET DEGREE=[pdeg]
SURF 1 XLOC=1, YLOC=2, SYM=0
INPUT
BOUN 1
<c1[1]>,<c1[2]>,<c1[3]> <c2[1]>,<c2[2]>,<c2[3]>
STOP

. make a separate run through spln for stiffeners
»remark Generate coefficient matrices
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*if <[nels] /ne 0> /then
. *open/new 27 PROCLIB.L27
. *set plib=27
*add ’$HOME/focus/STIFF.PRC’
. get global model parameters
[xqt aus
macro 1 CSMP FOCS 1 1 local 3 3 1 ’ngr
macro 1 CSMP FOCS 1 1 local 4 4 1 ’ngs
macro 1 CSMP FOCS 1 1 local 32 32 1 ’ngst
stop

*0PEN/new 3 bsp.stiff.103
[XQT SPLN

RESET SLIB = 3

RESET DEGREE=2

RESET ZDATA=1

SURF 1 XLOC=1, YLOC=2, SYM=0
INPUT
BOUN 1
- <ci[1]>,5.,0. <c2[1]>,5., [hs]
DS 1 STIF INPU 1 1

STOP
. *set plib=28
*endif
*end

*xprocedure MESH.LOCAL ( NNPE = 4; IOPT = 7; NRINGS = 4; --

NELS = 2; NELX = 6; NELE = 2; NELBS = 2; --

PNSECT=1; SNSECT=1; NSPOKES = 16; --
A = 2.; LENGTH=20.; DHOLE=0.5; BE=1.; --
BS=4. )

*show arg

[xqt aus
. build table of integer user data

TABLE(NI=33,NJ=1,itype=0): CSMP FOCS 1 1
J=1: [nnpe] [iopt] [nrings] [nspokes] >

001 111> Edge x=0.0 (Edge 1)
000 000> . Edge y=A+2*(nele+nelbs) (Edge 2)
101 111> . Edge x=Al (Edge 3)
000 000> . Edge y=0.0 (Edge 4)
001 111> . Corner at (0.,0.)
011 111> . Corner at (0.,[A+2*(nele+nelbs)])
111 111> . Corner at (Al,[A+2*(nele+nelbs)])
101 111> . Corner at (41,0.)
011 111> . Stiffeners at x=0.0
111 111> . Stiffeners at x=Al

. iwall jwall iref jref nelx nele nelbs nels ifill

.[pnsect] [snsect] 1 1 [nelx] [nele]l] [nelbs] [nels] ©
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. build table of floating point user data
TABLE(NI=10,NJ=1): CSMP FOCS 1 2
a dhole xc yc zc rat al be bs hs

.J=1: (o] [dhole]l <[Al/2> 0.0 0.0 0. [length]l [BE] [BS] 1.4
*END

*procedure STIFF NODE ( nels = O; nirngs = 4; nspokes = 16; --
ds_name = 'STIF’ )

*sho arg

*def/i icnt = 0

*def/i nelsx == <2*[nirngs]>
*def/i nnodsx == < <nelsx> + 2 >

*def/i nhole == < <[nirngs]+1>*[nspokes] >
*do $is = 1,2
*do $js = 1, [nels]
*def/i icnt = < <icnt> + 1 >
*def/i nstiffi[<icnt>]==< <nhole>+<<$is>-1>*<<nnodsx>+[nirngsl]> --
+ <<$js>-1>»<[nirngs]+1> + 1 >
*enddo
*enddo

*def/i nnstifil == <icnt>

[xqt AUS
TABLE (ni=1,nj=<nnstifi>,ITYPE=0): [ds_name] NODE 1 1
*do $is = 1,<nnstifi>
J=<$is>: <nstiff1[<$is>]>
*xenddo
stop
*end

. procedure BOUN_COND added to facilitate boundary condition
. definition with procedure GEN_SHELL the procedure may
. still be used with original model definition procedures.

*procedure BOUN_COND ( axial_nodes = 0; --
circum_nodes = 0; --
es_nodes = 0; -
drilling dof = ? ?; --

. ndof = 6 )
*if <[es_nodes] /ne 0> /then
*def/i nnod = < [axial nodes]*<[circum_nodes]-1> >
*def/i nnint = <[circum_nodes]-1>
[xqt AUS
TABLE (NI=1,NJ=<[circum_nodes]-1>,ITYPE=0): BOUN NODE 1 1
*do $i=1,<[circum_nodes]-1>
J = <$i>: < «$i>*[axial_nodes] >
*xenddo
*else
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*gal2mac /name=nnod /maxn=1 1,JDF1.BTAB.1.8,DATA.1
*find record_key 1,BOUN.NODE.1.1,DATA.1 /dim=nbn
*def/i nnint = <nbn>
*endif
[XQT AUS
MACRO 1 BOUN NODE 1 1 ’bneod
[XQT TAB
online=0
CON 1
*if < [ndof] /eq 5 > /then
NONZERO 1,2,3,4,5
*else
NONZERO 1,2,3,4,5,6
*endif
*do $i = 1, <nnint>
<bnod[<$i>]>
*xenddo
*if <<nels> /ne 0> /then
xdo $i = 1, <nnstifi>
<nstiffi[<$i>]>
*enddo
*endif
*end

*PROCEDURE FORM_MOD_CSM1 ( es_proc = ES1 ; es_name = EX47 ; --
nrings = 10; nspokes = 64; nels = 0; --
nelx = 6; nele = 2; nelbs =2; --
pnsect=1; snsect=1; a = 2.; --
length=20.; dhole=0.5; be=1.; bs=4.; --
ndof = 6 )

*call ES ( function = ’DEFINE ELEMENTS® ; es_proc = [es_procl; --
es_name = [es_name] ; es_pars = 0.0 )

*if <ifeqs(<Es_name>;E410)> /then
*def/i csmnen == 410
»*def/i csmopt == 1

*elseif <ifeqs(<Es_name>;E43)> /then

*def/i csmnen == 4
*def/i csmopt == 0

*alse
*def/i csmnen <Es_nen>

xdef/i csmopt == <Es_opt>
*endif

*def/i ndf == [ndof]

[XQT AUS
TABLE(NI=1,NJ=<nnint>,ITYPE=0): BOUN NODE 1 1
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*do $i = 1, <nspok>
J = <$i>: <<<nrings>-1>*<nspok>+<$i>>
*enddo
stop
*if <[nels] /ne 0> /then
*call STIFF_.NODE ( nels = <nsnody>; nirngs = <nrng>; --
nspokes = <nspok>; ds_name = ’STIF’ )
*endif

*CALL MESH_LOCAL ( NNPE = <csmnen>; IOPT = <csmopt>; --
NRINGS = <nrng>; NSPOKES = <nspok>; --
NELS = [nels]; NELX = [nelx]; --
pnsect=[pnsect]; snsect=[snsect]l; a = [a]; --
dhole=[dhole]; length=[length]; --
be=[bel; bs=[bs]; -- '
NELE = [nele]; NELBS = [nelbs] )

. *#if <[nels] /eq 0> /then
[XQT CSMX
. *endif

[XQT TAB
*ADD PANEL.PRC

*if <<ndf> /eq -6> /then
START <<nnod>+<nsnod>>
*else
*CALL PANEL_START
*endif
online=0
*def dtheta = < 360./<nspok> >
*def tend = < 360. - <dtheta> >
ALTREF
410. 20. 30, 15.05.75
JLOC o )
*CALL PANEL_JLOC

*call BOUN_COND

[XQT ELD
online=0
*CALL PANEL_CONN
stop

*call FORM_PANEL BOUN ( nspok = <nspok>; nrng = <nnrng> )
*undefine/global ri,ro,tend,j1,j2,in,dtheta,n2,n3,nrmi

. *0PEN 27 PROCLIB.L27

*set plib = 28

*if <[nels] /ne 0> /then
*CALL FORM_STIFF_BOUN
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*endif
*aend

sxprocedure INTERP_FIELD ( ndof = 6 ; nels = 0 )
*do $dof = 1, [ndof]
[XQT INTS
SURF=1
SYM =0
XY =1 BOUN XY 1 1
DATA= SYSVEC 1 STAT DISP 1 i COL <$dof>
INTER=1 REFI DISP 1 <$dof>
STOP
*enddo

. execute ints a second time to interpolate up stiffeners

*if <[nels] /ne 0> /then
*remark Interpolating stiffener displacements
*0PEN 3 bsp_stiff.103
*do $dof = 1, [ndof]
[XQT INTS
RESET SLIB = 3
RESET DEGREE =
SURF=1
SYM =0
XY =1 STIF XY 1 1
DATA= SYSVEC 1 STAT DISP 1 1 COL <$dof>
INTER=1 STIF DISP 1 <$dof>
STOP
*enddo
*endif
*end

2

*procedure FORM_PANEL_BOUN ( nspok = 16; nrng = 5; snbase = 0;
dnbase = 0; snskip = 0; --
append = <false> )

*if <[append]> /then

*def/a table = 'TABLE,U’

*else

*def/a table = ’TABLE’

*endif

*find record_key 1,BOUN.NODE.1.1,DATA.1 /dim=nbn

[XQT AUS

*if <[snbase] /eq 0> /then
*def/i sbase = < 3*<[nrng]-1>*[nspok]> >
*xdef/i sskip = 1
*else
*def/i sbase
*def/i sskip
*endif
DEFINE JLOC = JLOC BTAB 2 5
<table> (ni=2, nj=<nbn>): BOUN XY 1 1
TRANSFER(source=JLOC, sbase=<sbase>, sskip=<sskip>, --

3*[snbase] >
3x[snskip] + 1>

inn
AN
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ilim=2, dbase = <2*[dnbase]>, jlim=[nspok])
stop
*end

*procedure FORM_STIFF_BOUN

*remark SSSSSS=CEEESCS S CCE=CTSSSrESSEESSSESSSSSSSSSESSSEsss
*remark PROCESSING STIFFENER BOUNDARY LOCATIONS
¥remMark =====S=ST-SESSSSSoS S SEENERrC S ERCEIEEEXNTISESSSISS

*FIND RECORD_KEY 1 STIF.NODE.1.1,DATA.1 /DIM=NNSTF
[XQT AUS
MACRO 1 STIF NODE 1 1 ’nstff
TABLE (NI=2,NJ=<nnstf>): STIF XY 1 1
*do $ij = 1,<nnstf>
TRANSFER(source=JLOC, sbase=<3*<<nstff[<$ij>]>-1>>,--
dbase=<2*<<$ij>-1>>, sskip=1,ilim=1,jlim=2)
*enddo
stop
*end

*procedure FORM_APPL_MOTI ( nspok = 16; nrng = 5; nels = 0; --
ndf = 6; ambase = 0; --
amskip 0; snbase = 0; --
append = <false>; stiff_only=<false> )

*show arg ambase
xif <[ambase] /1t 0> /then
*return
*endif
*if <[append]> /then
xdef/a table = ’TABLE,U?
*alse
x*def/a table = ’TABLE’
*endif
[XQT AUS
*if <[nels] /ne 0> /then
MACRO 1 STIF NODE 1 1 ’nstff
*def/i sdskip = < <[ndf]-1> + [ndf]=*<<nstff[2]>-<nstff1]>-1> >
*endif
*do $dof = 1, [ndf]
DEFINE R<$dof> = REFI DISP 1 <$dof>
*if <[nels]> /ne 0> /then
DEFINE 5<$dof> = STIF DISP 1 <$dof>
*endif
*enddo

*gal2mac /name=nnodes /maxn=1 1,JDF1.BTAB.1.8,DATA.1
<table> (ni=[ndf],nj=<nnodes>): APPL MOTI 1 1

*do $dof = 1, [ndf]
*if <[ambase] /eq 0> /then
*def/i dbase=<[ndf]*<<[nrngl-1>*[nspok]>+<$dof>-1>
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*def/i dskip = 5

*alse

*def/i dbase=<[ndf]*[ambase]+<$dof>-1>
*def/i dskip = < [ndf]=*[amskipl+5 >
*endif

*if < [stiff_only] /eq <false> /then
TRANSFER (source=R<$dof>,dbase=<dbase>,dskip=<dskip>, --
jlim=[nspok], ilim=1, sbase = [snbase] )
*endif

. transfer the interpolated displacements for stiffeners into
. the APPL MOTI dataset

*if <[nels] /ne 0> /then
*xdef/i sdbasel = < [ndf]*<<nstff[1]1>-1> + <$dof>-1 >
*def/i sdbase2 = < [ndf]*<<nstff[<i+[nels]>]>-1> + <$dof>-1 >

*find record_key 1,STIF.NODE.1.1,DATA.1 /dim=nnstf

*do $ij = 1,<nnstf>
*def/i sdbase = < [ndf]*<<nstff[<$ij>]I>-1> + <$dof>-1 >
TRANSFER(source=S<$dof>,sbase=<<$ij>-1>,dbase=<sdbase>, -

sskip=1,ilim=1,jlim=1)

*enddo

*endif

*enddo

stop
*end

*procedure SOLVE ( direction = 1; location = ’CENTROIDS’; --
num_strs=8; stiffeners = <false>; --
nels = 0; ndof = 6; nrings = 10; --
nspokes = 64; ambase = 0; amskip = 0 )
*sho arg

*def/i ES_PROJ = 2
*def/i ndf = [ndof]
*def/i nspok = [nspokes]

*if < <es.nen> /eq 4 > /then
*def/i nrng = <[nrings]+1>
*def/i ngels == [nels]
*def/i ngrngs ==

*else

*def/i nrng = <2*[nrings]+1>
*def/i ngels == <2x[nels]>
*def/i ngrngs == 4

*gndif

*if <[stiffeners]> /then
*def/i ne = <nrng>
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*glse

*def/i ne

0

*endif

*def/i nnint

tXQT

< <nspok> + 2*<ne> >

DCU

TOC 1

*do $i = 1,<ndf>
PRIN 1 REFI DISP 1 <$i>
*if < [nels] /ne 0 > /then
PRIN 1 STIF DISP 1 <$i>
*endif

*enddo

*call FORM_APPL_MOTI ( nspok = <nspok>; nrng = <nrng>; --
nels=[nels]; ndf = <ndf>; --

tXQT

[XQT

ambase

RSEQ
RESET MAXCON=41,METHOD=1

TOPO
RESET MAXSUB=40000, LRAM=8196

[XQT E

[ambase] ; amskip = [amskip] )

———————— — - P D WD W S A M ev YR G W e aa -

*call ES ( function

*FORM STIFFNESS/MATL’ )

[xqt INV

online
reset lra

2

7168

reset dzero=1.E-10
‘reset spdp = <csm_precision>
[xqt AUS
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[XQT ssOL
RESET SET=1, CON=1

*call STRESS ( STRESS = <true> ; LOCATION = [location]; --
DIRECTION = [direction]; SMOOTH = <true> )

*call STRESS ( STRESS = <true> ; LOCATION = ’NODES’; --
DIRECTION = 0 )

*end
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Table 5.1 Finite Element Models of Isotropic Panel
with Circular Cutout.

Number of Number of Total Total
Model Rings Radial Spokes | Number of | Number of | K,
Designation of Nodes of Elements Elements Nodes
Gl 2 16 256 296 2.06
G2 4 16 288 328 2.23
G3 16 32 832 888 2.72
G4 32 80 3168 3272 2.81
LS1 16 32 512 544 2.76
LC1 16 32 512 544 2.75

¢ G4 is the converged model

Table 5.2 Summary of Computational Requirements.

Measures of Computational Effort

Model Total Number of Size of Data
Designation Degrees of Freedom CPU, seconds Library, Mbytes
Gl 1644 64.0 5.2

G2 1836 69.7 6.0

G3 5156 183.4 22.2

G4 19340 1167.2 160.0

LS1 3072 135.4 13.0

LC1 3072 121.6 12.6

¢ G4 is the converged model
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Table 5.3 Finite Element Models of Blade—Stiffened Panel
with Discontinuous Stiffener.

Number of Number of Total Total

Model Rings Radial Spokes | Number of | Number of | (Nz)maz
Designation | of Nodes of Elements Elements Nodes (Nz)avg
G1 2 16 376 424 2.22
G2 16 32 1024 1088 2.88
G3 16 32 1408 1488 2.88
G4 32 80 3472 3584 2.94
LS1 16 32 576 612 2.88
LC1 16 32 576 612 2.92
LR1 o - 16 25 -
LR2 - - 32 45 -
LR3 - - 96 117 -

¢ (G4 is the converged model

Table 5.4 Summary of Computational Requirements.

Measures of Computational Effort
Model Total Number of Size of Data
Designation Degrees of Freedom CPU, seconds | Library, Mbytes
Gl 2316 99.7 8.7
G2 6252 255.3 28.9
G3 8460 329.6 38.5
G4° 21084 1006.0 140.6
LS! 3456 187.7 13.6
LC1 3456 188.7 13.1
LR1 54 58.0 0.5
LR2 126 62.0 0.8
LR3 462 78.7 1.8

¢ G4 is the converged model
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Fig. 1.1 Global/Local Analysis Levels.
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(4-node  (3-node (4-node
elements) elements) elements)

Fig. 1.2 Mesh transitioning using triangular elements.

Coarse Variable Refined

region order region
(4-node elements (9-node
elements) elements)

Fig. 1.3 Mesh transitioning using variable-order elements.
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Fig. 2.1 Terminology of the global/local methodology.
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Fig. 2.2 Schematic of overall global/local solution strategy.
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Fig. 2.4 Terminology associated with modeling cutouts.
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Fig. 4.1 Concept of the CSM Testbed software system.
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Fig. 5.1 Stress concentration factor K for axial loading of a
finite—width plate with a transverse hole.
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Fig. 5.2 Coarse global finite element model of isotropic
panel with a circular cutout.
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Fig. 5.3 Longitudinal stress resultant N, distribution for coarse global
finite element model of isotropic panel with a circular cutout.
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Fig. 5.4 Transverse stress resultant N, distribution for coarse global
finite element model of isotropic panel with a circular cutout.
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Fig. 5.5 Longitudinal inplane stress resultant N, distributions at
panel midlength for coarse and refined global finite element models.
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Fig. 5.6 Distribution of the strain energy measure for coarse global
model of the panel with a circular cutout.
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Fig. 5.7 Global/local analysis models for Isotropic panel with circular cutout.
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Fig. 5.8 Longitudinal stress resultant N, distributions for square local
finite element model of isotropic panel with a circular cutout.
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Contour plot.

(b)

Fig. 5.8 Concluded.
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(a) Distribution at panel midlength.

Fig. 5.9 Longitudinal stress resultant N, distributions for circular local
finite element model of isotropic panel with a circular cutout.
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Fig. 5.10 Longitudinal inplane stress resultant N, distributions at panel
midlength for varied local model boundaries.
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Fig. 5.11 Bell-Boeing V-22 wing panel.
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Fig. 5.12 Composite blade-stiffened panel with a discontinuous stiffener.
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Fig. 5.13 End-shortening results for composite blade-stiffened panel.
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Fig. 5.14 Global finite element model of blade—stiffened panel with
discontinuous stiffener.
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Fig. 5.15 Longitudinal inplane stress resultant N, distributions at panel
midlength for coarse and refined global models.
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Fig. 5.16 Deformed geometry shape with N, distributions for coarse global
model of blade-stiffened panel with discontinuous stiffener.
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Fig. 5.17 Deformed geometry shape with N, distributions for coarse global
model of blade—stiffened panel with discontinuous stiffener.
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Fig. 5.18 Distribution of the strain energy measure for the coarse model
of the blade-stiffened panel with discontinuous stiffener.
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Fig. 5.19 Global/local analysis models for blade-stiffened panel with discontinuous stiffener.
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Fig. 5.20 Longitudinal stress resultant N, distributions for circular local
finite element model of blade-stiffened panel with discontinuous stiffener.
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(b) Contour plot.
Fig. 5.20 Concluded.
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Fig. 5.21 Longitudinal inplane stress resultant N, distributions at
panel midlength for skin-stiffener interface region.
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